Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Drug discovery targeting the mTOR pathway.

Identifieur interne : 000617 ( Main/Exploration ); précédent : 000616; suivant : 000618

Drug discovery targeting the mTOR pathway.

Auteurs : Alberto M. Martelli [Italie] ; Francesca Buontempo [Italie] ; James A. Mccubrey [États-Unis]

Source :

RBID : pubmed:29523752

Descripteurs français

English descriptors

Abstract

Mechanistic target of rapamycin (mTOR) is the kinase subunit of two structurally and functionally distinct large multiprotein complexes, referred to as mTOR complex 1 (mTORC1) and mTORC2. mTORC1 and mTORC2 play key physiological roles as they control anabolic and catabolic processes in response to external cues in a variety of tissues and organs. However, mTORC1 and mTORC2 activities are deregulated in widespread human diseases, including cancer. Cancer cells take advantage of mTOR oncogenic signaling to drive their proliferation, survival, metabolic transformation, and metastatic potential. Therefore, mTOR lends itself very well as a therapeutic target for innovative cancer treatment. mTOR was initially identified as the target of the antibiotic rapamycin that displayed remarkable antitumor activity in vitro Promising preclinical studies using rapamycin and its derivatives (rapalogs) demonstrated efficacy in many human cancer types, hence supporting the launch of numerous clinical trials aimed to evaluate the real effectiveness of mTOR-targeted therapies. However, rapamycin and rapalogs have shown very limited activity in most clinical contexts, also when combined with other drugs. Thus, novel classes of mTOR inhibitors with a stronger antineoplastic potency have been developed. Nevertheless, emerging clinical data suggest that also these novel mTOR-targeting drugs may have a weak antitumor activity. Here, we summarize the current status of available mTOR inhibitors and highlight the most relevant results from both preclinical and clinical studies that have provided valuable insights into both their efficacy and failure.

DOI: 10.1042/CS20171158
PubMed: 29523752


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Drug discovery targeting the mTOR pathway.</title>
<author>
<name sortKey="Martelli, Alberto M" sort="Martelli, Alberto M" uniqKey="Martelli A" first="Alberto M" last="Martelli">Alberto M. Martelli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy alberto.martelli@unibo.it mccubreyj@ecu.edu.</nlm:affiliation>
<country wicri:rule="url">Italie</country>
<wicri:regionArea>Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna</wicri:regionArea>
<wicri:noRegion>40126 Bologna</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Buontempo, Francesca" sort="Buontempo, Francesca" uniqKey="Buontempo F" first="Francesca" last="Buontempo">Francesca Buontempo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna</wicri:regionArea>
<wicri:noRegion>40126 Bologna</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mccubrey, James A" sort="Mccubrey, James A" uniqKey="Mccubrey J" first="James A" last="Mccubrey">James A. Mccubrey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, U.S.A. alberto.martelli@unibo.it mccubreyj@ecu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29523752</idno>
<idno type="pmid">29523752</idno>
<idno type="doi">10.1042/CS20171158</idno>
<idno type="wicri:Area/Main/Corpus">000600</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000600</idno>
<idno type="wicri:Area/Main/Curation">000600</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000600</idno>
<idno type="wicri:Area/Main/Exploration">000600</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Drug discovery targeting the mTOR pathway.</title>
<author>
<name sortKey="Martelli, Alberto M" sort="Martelli, Alberto M" uniqKey="Martelli A" first="Alberto M" last="Martelli">Alberto M. Martelli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy alberto.martelli@unibo.it mccubreyj@ecu.edu.</nlm:affiliation>
<country wicri:rule="url">Italie</country>
<wicri:regionArea>Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna</wicri:regionArea>
<wicri:noRegion>40126 Bologna</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Buontempo, Francesca" sort="Buontempo, Francesca" uniqKey="Buontempo F" first="Francesca" last="Buontempo">Francesca Buontempo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna</wicri:regionArea>
<wicri:noRegion>40126 Bologna</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mccubrey, James A" sort="Mccubrey, James A" uniqKey="Mccubrey J" first="James A" last="Mccubrey">James A. Mccubrey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, U.S.A. alberto.martelli@unibo.it mccubreyj@ecu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Clinical science (London, England : 1979)</title>
<idno type="eISSN">1470-8736</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antibiotics, Antineoplastic (therapeutic use)</term>
<term>Cell Proliferation (drug effects)</term>
<term>Drug Discovery (methods)</term>
<term>Humans (MeSH)</term>
<term>Molecular Targeted Therapy (methods)</term>
<term>Neoplasms (drug therapy)</term>
<term>Neoplasms (metabolism)</term>
<term>Neoplasms (pathology)</term>
<term>Signal Transduction (drug effects)</term>
<term>Sirolimus (therapeutic use)</term>
<term>TOR Serine-Threonine Kinases (antagonists & inhibitors)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antibiotiques antinéoplasiques (usage thérapeutique)</term>
<term>Découverte de médicament (méthodes)</term>
<term>Humains (MeSH)</term>
<term>Prolifération cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Sirolimus (usage thérapeutique)</term>
<term>Sérine-thréonine kinases TOR (antagonistes et inhibiteurs)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Thérapie moléculaire ciblée (méthodes)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
<term>Tumeurs (anatomopathologie)</term>
<term>Tumeurs (métabolisme)</term>
<term>Tumeurs (traitement médicamenteux)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antibiotics, Antineoplastic</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Tumeurs</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Proliferation</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Prolifération cellulaire</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Drug Discovery</term>
<term>Molecular Targeted Therapy</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Sérine-thréonine kinases TOR</term>
<term>Tumeurs</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Découverte de médicament</term>
<term>Thérapie moléculaire ciblée</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Tumeurs</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Antibiotiques antinéoplasiques</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mechanistic target of rapamycin (mTOR) is the kinase subunit of two structurally and functionally distinct large multiprotein complexes, referred to as mTOR complex 1 (mTORC1) and mTORC2. mTORC1 and mTORC2 play key physiological roles as they control anabolic and catabolic processes in response to external cues in a variety of tissues and organs. However, mTORC1 and mTORC2 activities are deregulated in widespread human diseases, including cancer. Cancer cells take advantage of mTOR oncogenic signaling to drive their proliferation, survival, metabolic transformation, and metastatic potential. Therefore, mTOR lends itself very well as a therapeutic target for innovative cancer treatment. mTOR was initially identified as the target of the antibiotic rapamycin that displayed remarkable antitumor activity
<i>in vitro</i>
Promising preclinical studies using rapamycin and its derivatives (rapalogs) demonstrated efficacy in many human cancer types, hence supporting the launch of numerous clinical trials aimed to evaluate the real effectiveness of mTOR-targeted therapies. However, rapamycin and rapalogs have shown very limited activity in most clinical contexts, also when combined with other drugs. Thus, novel classes of mTOR inhibitors with a stronger antineoplastic potency have been developed. Nevertheless, emerging clinical data suggest that also these novel mTOR-targeting drugs may have a weak antitumor activity. Here, we summarize the current status of available mTOR inhibitors and highlight the most relevant results from both preclinical and clinical studies that have provided valuable insights into both their efficacy and failure.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29523752</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>04</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1470-8736</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>132</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2018</Year>
<Month>03</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Clinical science (London, England : 1979)</Title>
<ISOAbbreviation>Clin Sci (Lond)</ISOAbbreviation>
</Journal>
<ArticleTitle>Drug discovery targeting the mTOR pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>543-568</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1042/CS20171158</ELocationID>
<Abstract>
<AbstractText>Mechanistic target of rapamycin (mTOR) is the kinase subunit of two structurally and functionally distinct large multiprotein complexes, referred to as mTOR complex 1 (mTORC1) and mTORC2. mTORC1 and mTORC2 play key physiological roles as they control anabolic and catabolic processes in response to external cues in a variety of tissues and organs. However, mTORC1 and mTORC2 activities are deregulated in widespread human diseases, including cancer. Cancer cells take advantage of mTOR oncogenic signaling to drive their proliferation, survival, metabolic transformation, and metastatic potential. Therefore, mTOR lends itself very well as a therapeutic target for innovative cancer treatment. mTOR was initially identified as the target of the antibiotic rapamycin that displayed remarkable antitumor activity
<i>in vitro</i>
Promising preclinical studies using rapamycin and its derivatives (rapalogs) demonstrated efficacy in many human cancer types, hence supporting the launch of numerous clinical trials aimed to evaluate the real effectiveness of mTOR-targeted therapies. However, rapamycin and rapalogs have shown very limited activity in most clinical contexts, also when combined with other drugs. Thus, novel classes of mTOR inhibitors with a stronger antineoplastic potency have been developed. Nevertheless, emerging clinical data suggest that also these novel mTOR-targeting drugs may have a weak antitumor activity. Here, we summarize the current status of available mTOR inhibitors and highlight the most relevant results from both preclinical and clinical studies that have provided valuable insights into both their efficacy and failure.</AbstractText>
<CopyrightInformation>© 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Martelli</LastName>
<ForeName>Alberto M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy alberto.martelli@unibo.it mccubreyj@ecu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Buontempo</LastName>
<ForeName>Francesca</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McCubrey</LastName>
<ForeName>James A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, U.S.A. alberto.martelli@unibo.it mccubreyj@ecu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>03</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Clin Sci (Lond)</MedlineTA>
<NlmUniqueID>7905731</NlmUniqueID>
<ISSNLinking>0143-5221</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000903">Antibiotics, Antineoplastic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000903" MajorTopicYN="N">Antibiotics, Antineoplastic</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055808" MajorTopicYN="N">Drug Discovery</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058990" MajorTopicYN="N">Molecular Targeted Therapy</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009369" MajorTopicYN="N">Neoplasms</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">cancer therapy</Keyword>
<Keyword MajorTopicYN="Y">mechanistic target of rapamycin</Keyword>
<Keyword MajorTopicYN="Y">phosphoinositide 3-kinase</Keyword>
<Keyword MajorTopicYN="Y">protein kinase B</Keyword>
<Keyword MajorTopicYN="Y">rapalogs</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>01</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>02</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>02</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29523752</ArticleId>
<ArticleId IdType="pii">CS20171158</ArticleId>
<ArticleId IdType="doi">10.1042/CS20171158</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="Italie">
<noRegion>
<name sortKey="Martelli, Alberto M" sort="Martelli, Alberto M" uniqKey="Martelli A" first="Alberto M" last="Martelli">Alberto M. Martelli</name>
</noRegion>
<name sortKey="Buontempo, Francesca" sort="Buontempo, Francesca" uniqKey="Buontempo F" first="Francesca" last="Buontempo">Francesca Buontempo</name>
</country>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Mccubrey, James A" sort="Mccubrey, James A" uniqKey="Mccubrey J" first="James A" last="Mccubrey">James A. Mccubrey</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000617 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000617 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29523752
   |texte=   Drug discovery targeting the mTOR pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29523752" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020